Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Front Immunol ; 14: 1155935, 2023.
Article En | MEDLINE | ID: mdl-37325640

Introduction: Osteopontin (OPN; also known as SPP1), an immunomodulatory cytokine highly expressed in bone marrow-derived macrophages (BMMΦ), is known to regulate diverse cellular and molecular immune responses. We previously revealed that glatiramer acetate (GA) stimulation of BMMΦ upregulates OPN expression, promoting an anti-inflammatory, pro-healing phenotype, whereas OPN inhibition triggers a pro-inflammatory phenotype. However, the precise role of OPN in macrophage activation state is unknown. Methods: Here, we applied global proteome profiling via mass spectrometry (MS) analysis to gain a mechanistic understanding of OPN suppression versus induction in primary macrophage cultures. We analyzed protein networks and immune-related functional pathways in BMMΦ either with OPN knockout (OPNKO) or GA-mediated OPN induction compared with wild type (WT) macrophages. The most significant differentially expressed proteins (DEPs) were validated using immunocytochemistry, western blot, and immunoprecipitation assays. Results and discussion: We identified 631 DEPs in OPNKO or GA-stimulated macrophages as compared to WT macrophages. The two topmost downregulated DEPs in OPNKO macrophages were ubiquitin C-terminal hydrolase L1 (UCHL1), a crucial component of the ubiquitin-proteasome system (UPS), and the anti-inflammatory Heme oxygenase 1 (HMOX-1), whereas GA stimulation upregulated their expression. We found that UCHL1, previously described as a neuron-specific protein, is expressed by BMMΦ and its regulation in macrophages was OPN-dependent. Moreover, UCHL1 interacted with OPN in a protein complex. The effects of GA activation on inducing UCHL1 and anti-inflammatory macrophage profiles were mediated by OPN. Functional pathway analyses revealed two inversely regulated pathways in OPN-deficient macrophages: activated oxidative stress and lysosome-mitochondria-mediated apoptosis (e.g., ROS, Lamp1-2, ATP-synthase subunits, cathepsins, and cytochrome C and B subunits) and inhibited translation and proteolytic pathways (e.g., 60S and 40S ribosomal subunits and UPS proteins). In agreement with the proteome-bioinformatics data, western blot and immunocytochemical analyses revealed that OPN deficiency perturbs protein homeostasis in macrophages-inhibiting translation and protein turnover and inducing apoptosis-whereas OPN induction by GA restores cellular proteostasis. Taken together, OPN is essential for macrophage homeostatic balance via the regulation of protein synthesis, UCHL1-UPS axis, and mitochondria-mediated apoptotic processes, indicating its potential application in immune-based therapies.


Osteopontin , Proteasome Endopeptidase Complex , Osteopontin/genetics , Osteopontin/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteostasis , Proteome/metabolism , Macrophages , Mitochondria/metabolism , Apoptosis
2.
Ageing Res Rev ; 84: 101819, 2023 02.
Article En | MEDLINE | ID: mdl-36526257

Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.


Alzheimer Disease , Neurodegenerative Diseases , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/diagnosis , Acetylcholinesterase/therapeutic use , Neurodegenerative Diseases/drug therapy , Precision Medicine
4.
Cell Mol Neurobiol ; 42(8): 2505-2525, 2022 Nov.
Article En | MEDLINE | ID: mdl-34460037

Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.


Brain Ischemia , Microglia , Anti-Inflammatory Agents/pharmacology , Brain Ischemia/metabolism , Cytokines/metabolism , Humans , Microglia/metabolism , Neuroprotection
5.
J Agric Food Chem ; 69(48): 14358-14371, 2021 Dec 08.
Article En | MEDLINE | ID: mdl-34843254

Moringa oleifera, popularly known as a miracle tree or tree of life, has been extensively used as a functional food and nutritional asset worldwide. Ethnomedicinal and traditional uses of M. oleifera indicate that this plant might have a pleiotropic therapeutic efficacy against most human ailments. In fact, M. oleifera is reported to have several pharmacological activities, including antioxidant, antibacterial, antifungal, antidiabetic, antipyretic, antiulcer, antispasmodic, antihypertensive, antitumor, hepatoprotective, and cardiac stimulant properties. Recently, a few experimental studies reported the neuroprotective effects of M. oleifera against Alzheimer's disease, dementia, Parkinson's disease, stroke, and neurotoxicity-related symptoms. In addition, several neuroprotective phytochemicals have been isolated from M. oleifera, which signifies that it can have promising neuroprotective effects. Therefore, this review aimed to explore the current updates and future prospective of neuroprotective efficacies of M. oleifera.


Moringa oleifera , Neurodegenerative Diseases , Plants, Medicinal , Humans , Neurodegenerative Diseases/drug therapy , Plant Extracts , Plant Leaves
6.
Front Mol Neurosci ; 14: 719100, 2021.
Article En | MEDLINE | ID: mdl-34650402

A typical neuron consists of a soma, a single axon with numerous nerve terminals, and multiple dendritic trunks with numerous branches. Each of the 100 billion neurons in the brain has on average 7,000 synaptic connections to other neurons. The neuronal endolysosomal compartments for the degradation of axonal and dendritic waste are located in the soma region. That means that all autophagosomal and endosomal cargos from 7,000 synaptic connections must be transported to the soma region for degradation. For that reason, neuronal endolysosomal degradation is an extraordinarily demanding and dynamic event, and thus is highly susceptible to many pathological conditions. Dysfunction in the endolysosomal trafficking pathways occurs in virtually all neurodegenerative diseases. Most lysosomal storage disorders (LSDs) with defects in the endolysosomal system preferentially affect the central nervous system (CNS). Recently, significant progress has been made in understanding the role that the endolysosomal trafficking pathways play after brain ischemia. Brain ischemia damages the membrane fusion machinery co-operated by N-ethylmaleimide sensitive factor (NSF), soluble NSF attachment protein (SNAP), and soluble NSF attachment protein receptors (SNAREs), thus interrupting the membrane-to-membrane fusion between the late endosome and terminal lysosome. This interruption obstructs all incoming traffic. Consequently, both the size and number of endolysosomal structures, autophagosomes, early endosomes, and intra-neuronal protein aggregates are increased extensively in post-ischemic neurons. This cascade of events eventually damages the endolysosomal structures to release hydrolases leading to ischemic brain injury. Gene knockout and selective inhibition of key endolysosomal cathepsins protects the brain from ischemic injury. This review aims to provide an update of the current knowledge, future research directions, and the clinical implications regarding the critical role of the neuronal endolysosomal trafficking pathways in ischemic brain injury.

7.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article En | MEDLINE | ID: mdl-34360625

Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.


Astrocytes/metabolism , Central Nervous System Diseases/metabolism , Neuroglia/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Humans
8.
ACS Chem Neurosci ; 12(14): 2562-2572, 2021 07 21.
Article En | MEDLINE | ID: mdl-34251185

Despite being a major global health concern, cerebral ischemia/stroke has limited therapeutic options. Tissue plasminogen activator (tPA) is the only available medication to manage acute ischemic stroke, but this medication is associated with adverse effects and has a narrow therapeutic time window. Curcumin, a polyphenol that is abundantly present in the rhizome of the turmeric plant (Curcuma longa), has shown promising neuroprotective effects in animal models of neurodegenerative diseases, including cerebral ischemia. In the central nervous system (CNS), neuroprotective effects of curcumin have been experimentally validated in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and cerebral ischemia. Curcumin can exert pleiotropic effects in the postischemic brain including antioxidant, anti-inflammatory, antiapoptotic, vasculoprotective, and direct neuroprotective efficacies. Importantly, neuroprotective effects of curcumin has been reported in both ischemic and hemorrhagic stroke models. A broad-spectrum neuroprotective efficacy of curcumin suggested that curcumin can be an appealing therapeutic strategy to treat cerebral ischemia. In this review, we aimed to address the pharmacotherapeutic potential of curcumin in cerebral ischemia including its cellular and molecular mechanisms of neuroprotection revealing curcumin as an appealing therapeutic candidate for cerebral ischemia.


Brain Ischemia , Curcumin , Neuroprotective Agents , Stroke , Animals , Brain Ischemia/drug therapy , Curcumin/pharmacology , Neuroprotective Agents/pharmacology , Stroke/drug therapy , Tissue Plasminogen Activator
9.
Pharmacol Res ; 169: 105661, 2021 07.
Article En | MEDLINE | ID: mdl-33971269

Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.


Abietanes/therapeutic use , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Alzheimer Disease/drug therapy , Animals , Brain Ischemia/drug therapy , Humans , Multiple Sclerosis/drug therapy , Parkinson Disease/drug therapy
10.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article En | MEDLINE | ID: mdl-33946349

Nitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS). Therefore, controlling excessive NO production is a desirable therapeutic strategy for managing various neuroinflammatory disorders. Recently, phytochemicals have attracted considerable attention because of their potential to counteract excessive NO production in CNS disorders. Moreover, phytochemicals and nutraceuticals are typically safe and effective. In this review, we discuss the mechanisms of NO production and its involvement in various neurological disorders, and we revisit a number of recently identified phytochemicals which may act as NO inhibitors. This review may help identify novel potent anti-inflammatory agents that can downregulate NO, specifically during neuroinflammation and neurodegeneration.


Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Nitric Oxide/metabolism , Phytochemicals/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Drug Discovery , Humans , Inflammation/metabolism , Molecular Targeted Therapy , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Nitric Oxide/antagonists & inhibitors , Oxidative Stress/drug effects , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Reactive Nitrogen Species/metabolism
11.
Int J Mol Sci ; 22(4)2021 Feb 16.
Article En | MEDLINE | ID: mdl-33669456

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19), is a worldwide pandemic, as declared by the World Health Organization (WHO). It is a respiratory virus that infects people of all ages. Although it may present with mild to no symptoms in most patients, those who are older, immunocompromised, or with multiple comorbidities may present with severe and life-threatening infections. Throughout history, nutraceuticals, such as a variety of phytochemicals from medicinal plants and dietary supplements, have been used as adjunct therapies for many disease conditions, including viral infections. Appropriate use of these adjunct therapies with antiviral proprieties may be beneficial in the treatment and/or prophylaxis of COVID-19. In this review, we provide a comprehensive summary of nutraceuticals, such as vitamins C, D, E, zinc, melatonin, and other phytochemicals and function foods. These nutraceuticals may have potential therapeutic efficacies in fighting the threat of the SARS-CoV-2/COVID-19 pandemic.


COVID-19 Drug Treatment , Dietary Supplements , Melatonin/therapeutic use , Vitamins/therapeutic use , Zinc/therapeutic use , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Dietary Supplements/analysis , Functional Food/analysis , Humans , Melatonin/pharmacology , SARS-CoV-2/drug effects , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamin E/pharmacology , Vitamin E/therapeutic use , Vitamins/pharmacology , Zinc/pharmacology
12.
Pharmacol Res ; 165: 105419, 2021 03.
Article En | MEDLINE | ID: mdl-33450385

The search for novel therapeutic agents for the management of cerebral ischemia/stroke has become an appealing research interest in the recent past. Neuroprotective phytochemicals as novel stroke drug candidates have recently drawn significant interests from stroke scientists due to their strong brain protective effects in animal stroke models. The underlying mechanism of action is likely owing to their anti-inflammatory properties, even though other mechanisms such as anti-oxidation and vasculoprotection have also been proposed. It is generally held that the early proinflammatory responses after stroke can lead to a secondary brain injury, mainly due to the damaging effect exerted by over-activation of brain resident microglial cells and infiltration of circulating monocytes and macrophages. This review focuses on the anti-inflammatory properties of bioactive phytochemicals, including activation and polarization of microglia/macrophages in the post-ischemic brain. The latest studies in animal stroke models demonstrate that this group of bioactive phytochemicals exerts their anti-inflammatory effects via attenuation of brain proinflammatory microglia and macrophages M1 polarization while promoting anti-inflammatory microglial and macrophages M2 polarization. As a result, stroked animals treated with brain protective phytochemicals have significantly fewer brain active M1 microglia and macrophages, smaller brain infarct volume, better functional recovery, and better survival rate. Therefore, this review provides insights into a new category of drug candidates for stroke drug development by employing neuroprotective phytochemicals.


Brain Ischemia/drug therapy , Macrophage Activation/drug effects , Macrophages/drug effects , Microglia/drug effects , Neuroprotective Agents/therapeutic use , Phytochemicals/therapeutic use , Animals , Humans , Neuroinflammatory Diseases/drug therapy
13.
Neuromolecular Med ; 23(1): 211-223, 2021 03.
Article En | MEDLINE | ID: mdl-32914259

Sphingosine 1-phosphate (S1P) is an important lipid biomolecule that exerts pleiotropic cellular actions as it binds to and activates its five G-protein-coupled receptors, S1P1-5. Through these receptors, S1P can mediate diverse biological activities in both healthy and diseased conditions. S1P is produced by S1P-producing enzymes, sphingosine kinases (SphK1 and SphK2), and is abundantly present in different organs, including the brain. The medically important roles of receptor-mediated S1P signaling are well characterized in multiple sclerosis because FTY720 (Gilenya™, Novartis), a non-selective S1P receptor modulator, is currently used as a treatment for this disease. In cerebral ischemia, its role is also notable because of FTY720's efficacy in both rodent models and human patients with cerebral ischemia. In particular, some of the S1P receptors, including S1P1, S1P2, and S1P3, have been identified as pathogenic players in cerebral ischemia. Other than these receptors, S1P itself and S1P-producing enzymes have been shown to play certain roles in cerebral ischemia. This review aims to compile the current updates and overviews about the roles of S1P signaling, along with a focus on S1P receptors in cerebral ischemia, based on recent studies that used in vivo rodent models of cerebral ischemia.


Brain Ischemia/metabolism , Lysophospholipids/physiology , Nerve Tissue Proteins/physiology , Sphingosine-1-Phosphate Receptors/physiology , Sphingosine/analogs & derivatives , Animals , Brain Damage, Chronic/etiology , Brain Damage, Chronic/metabolism , Brain Ischemia/complications , Clinical Trials as Topic , Disease Models, Animal , Drug Evaluation, Preclinical , Fingolimod Hydrochloride/therapeutic use , Humans , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Inflammation , Ischemic Stroke/drug therapy , Neovascularization, Physiologic/drug effects , Neuroprotective Agents/therapeutic use , Phosphotransferases (Alcohol Group Acceptor)/physiology , Rats , Signal Transduction/physiology , Sphingosine/physiology
14.
Int J Mol Sci ; 21(22)2020 Nov 14.
Article En | MEDLINE | ID: mdl-33202644

Lysophosphatidic acid receptor 1 (LPA1) contributes to brain injury following transient focal cerebral ischemia. However, the mechanism remains unclear. Here, we investigated whether nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation might be an underlying mechanism involved in the pathogenesis of brain injury associated with LPA1 following ischemic challenge with transient middle cerebral artery occlusion (tMCAO). Suppressing LPA1 activity by its antagonist attenuated NLRP3 upregulation in the penumbra and ischemic core regions, particularly in ionized calcium-binding adapter molecule 1 (Iba1)-expressing cells like macrophages of mouse after tMCAO challenge. It also suppressed NLRP3 inflammasome activation, such as caspase-1 activation, interleukin 1ß (IL-1ß) maturation, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, in a post-ischemic brain. The role of LPA1 in NLRP3 inflammasome activation was confirmed in vitro using lipopolysaccharide-primed bone marrow-derived macrophages, followed by LPA exposure. Suppressing LPA1 activity by either pharmacological antagonism or genetic knockdown attenuated NLRP3 upregulation, caspase-1 activation, IL-1ß maturation, and IL-1ß secretion in these cells. Furthermore, nuclear factor-κB (NF-κB), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 were found to be LPA1-dependent effector pathways in these cells. Collectively, results of the current study first demonstrate that LPA1 could contribute to ischemic brain injury by activating NLRP3 inflammasome with underlying effector mechanisms.


Brain Injuries/metabolism , Ischemic Attack, Transient/metabolism , Lysophospholipids/metabolism , MAP Kinase Signaling System , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Animals , Brain Injuries/etiology , Brain Injuries/pathology , Caspase 1/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-1beta/metabolism , Ischemic Attack, Transient/complications , Ischemic Attack, Transient/pathology , Male , Mice , Mice, Inbred ICR
15.
Antioxidants (Basel) ; 9(11)2020 Nov 08.
Article En | MEDLINE | ID: mdl-33171697

Stroke is a leading cause of death. Stroke survivors often suffer from long-term functional disability. This study demonstrated neuroprotective effects of BMS-986020 (BMS), a selective lysophosphatidic acid receptor 1 (LPA1) antagonist under clinical trials for lung fibrosis and psoriasis, against both acute and sub-acute injuries after ischemic stroke by employing a mouse model with transient middle cerebral artery occlusion (tMCAO). BMS administration immediately after reperfusion significantly attenuated acute brain injuries including brain infarction, neurological deficits, and cell apoptosis at day 1 after tMCAO. Neuroprotective effects of BMS were preserved even when administered at 3 h after reperfusion. Neuroprotection by BMS against acute injuries was associated with attenuation of microglial activation and lipid peroxidation in post-ischemic brains. Notably, repeated BMS administration daily for 14 days after tMCAO exerted long-term neuroprotection in tMCAO-challenged mice, as evidenced by significantly attenuated neurological deficits and improved survival rate. It also attenuated brain tissue loss and cell apoptosis in post-ischemic brains. Mechanistically, it significantly enhanced neurogenesis and angiogenesis in injured brains. A single administration of BMS provided similar long-term neuroprotection except survival rate. Collectively, BMS provided neuroprotection against both acute and sub-acute injuries of ischemic stroke, indicating that BMS might be an appealing therapeutic agent to treat ischemic stroke.

16.
Antioxidants (Basel) ; 9(9)2020 Aug 26.
Article En | MEDLINE | ID: mdl-32859007

Advanced glycation end products (AGEs) are produced through the binding of glycated protein or lipid with sugar, and they are known to be involved in the pathogenesis of both age-dependent and independent neurological complications. Among dicarbonyl compounds, methylglyoxal (MGO), which is produced from glucose breakdown, is a key precursor of AGE formation and neurotoxicity. Several studies have shown the toxic effects of bovine serum albumin (BSA)-AGE (prepared with glucose, sucrose or fructose) both in in vitro and in vivo. In fact, MGO-derived AGEs (MGO-AGEs) are highly toxic to neurons and other cells of the central nervous system. Therefore, we aimed to investigate the role of MGO-AGEs in microglial activation, a key inflammatory event, or secondary brain damage in neuroinflammatory diseases. Interestingly, we found that sulforaphane (SFN) as a potential candidate to downregulate neuroinflammation induced by MGO-AGEs in BV2 microglial cells. SFN not only inhibited the formation of MGO-AGEs, but it did not show breaking activity on the MGO-mediated AGEs cross-links with protein, indicating that SFN could potentially trap MGO or inhibit toxic AGE damage. In addition, SFN significantly attenuated the production of neuroinflammatory mediators induced by MGO-AGEs in BV2 microglial cells. SFN also lowered the expression levels of AGE receptor (RAGE) in microglial cells, suggesting that SFN could downregulate MGO-AGE-mediated neurotoxicity at the receptor activation level. Altogether, our current study revealed that SFN might show neuropharmacological potential for downregulating MGO-AGEs-mediated neuronal complications thorough attenuating AGE formation and neuroinflammatory responses induced by MGO-AGEs in vitro.

17.
Cells ; 9(8)2020 07 22.
Article En | MEDLINE | ID: mdl-32707926

The pathogenesis of psoriasis, an immune-mediated chronic skin barrier disease, is not fully understood yet. Here, we identified lysophosphatidic acid (LPA) receptor 5 (LPA5)-mediated signaling as a novel pathogenic factor in psoriasis using an imiquimod-induced psoriasis mouse model. Amounts of most LPA species were markedly elevated in injured skin of psoriasis mice, along with LPA5 upregulation in injured skin. Suppressing the activity of LPA5 with TCLPA5, a selective LPA5 antagonist, improved psoriasis symptoms, including ear thickening, skin erythema, and skin scaling in imiquimod-challenged mice. TCLPA5 administration attenuated dermal infiltration of macrophages that were found as the major cell type for LPA5 upregulation in psoriasis lesions. Notably, TCLPA5 administration attenuated the upregulation of macrophage NLRP3 in injured skin of mice with imiquimod-induced psoriasis. This critical role of LPA5 in macrophage NLRP3 was further addressed using lipopolysaccharide-primed bone marrow-derived macrophages. LPA exposure activated NLRP3 inflammasome in lipopolysaccharide-primed cells, which was evidenced by NLRP3 upregulation, caspase-1 activation, and IL-1ß maturation/secretion. This LPA-driven NLRP3 inflammasome activation in lipopolysaccharide-primed cells was significantly attenuated upon LPA5 knockdown. Overall, our findings establish a pathogenic role of LPA5 in psoriasis along with an underlying mechanism, further suggesting LPA5 antagonism as a potential strategy to treat psoriasis.


Imiquimod/adverse effects , Inflammasomes/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Psoriasis/blood , Psoriasis/chemically induced , Receptors, Lysophosphatidic Acid/blood , Animals , Bone Marrow Cells/cytology , Cells, Cultured , Disease Models, Animal , Gene Knockdown Techniques , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/genetics , Signal Transduction/genetics , Skin/injuries , Skin/metabolism , Transfection , Up-Regulation/genetics
18.
Int J Mol Sci ; 21(3)2020 Jan 24.
Article En | MEDLINE | ID: mdl-31991572

Tumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied component of inflammatory responses, its functioning in diverse cell types is still unclear. TNF-α functions through its two main receptors: tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), also known as p55 and p75, respectively. Normally, the functions of soluble TNF-α-induced TNFR1 activation are reported to be pro-inflammatory and apoptotic. While TNF-α mediated TNFR2 activation has a dual role. Several synthetic drugs used as inhibitors of TNF-α for diverse inflammatory diseases possess serious adverse effects, which make patients and researchers turn their focus toward natural medicines, phytochemicals in particular. Phytochemicals targeting TNF-α can significantly improve disease conditions involving TNF-α with fewer side effects. Here, we reviewed known TNF-α inhibitors, as well as lately studied phytochemicals, with a role in inhibiting TNF-α itself, and TNF-α-mediated signaling in inflammatory diseases focusing mainly on CNS disorders.


Neurodegenerative Diseases/drug therapy , Phytochemicals/therapeutic use , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha , Animals , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
19.
Cancers (Basel) ; 11(12)2019 Dec 05.
Article En | MEDLINE | ID: mdl-31817453

Isorhapontigenin (ISO), a tetrahydroxylated stilbenoid, is an analog of resveratrol (Rsv). The various biological activities of Rsv and its derivatives have been previously reported in the context of both cancer and inflammation. However, the anti-cancer effect of ISO against breast cancer has not been well established, despite being an orally bioavailable dietary polyphenol. In this study, we determine the anti-cancer effects of ISO against breast cancer using MCF7, T47D, and MDA-MB-231 cell lines. We observed that ISO induces breast cancer cell death, cell cycle arrest, oxidative stress, and the inhibition of cell proliferation. Additionally, sphingosine kinase inhibition by ISO controlled tubulin polymerization and cancer cell growth by regulating MAPK/PI3K-mediated cell cycle arrest in MCF7 cells. Interestingly, SPHK1/2 gene silencing increased oxidative stress, cell death, and tubulin destabilization in MCF7 cells. This suggests that the anti-cancer effect of ISO can be regulated by SPHK/tubulin destabilization pathways. Overall, ISO successfully induced breast cancer cell death and cell growth arrest, suggesting this phytochemical is a better alternative for breast cancer treatment. Further studies in animal models could confirm the potency and usability of ISO over Rsv for targeting breast cancer, potentially posing an alternative candidate for improved therapy in the near future.

20.
J Neuroinflammation ; 16(1): 170, 2019 Aug 20.
Article En | MEDLINE | ID: mdl-31429777

BACKGROUND: Lysophosphatidic acid receptor 1 (LPA1) is in the spotlight because its synthetic antagonist has been under clinical trials for lung fibrosis and psoriasis. Targeting LPA1 might also be a therapeutic strategy for cerebral ischemia because LPA1 triggers microglial activation, a core pathogenesis in cerebral ischemia. Here, we addressed this possibility using a mouse model of transient middle cerebral artery occlusion (tMCAO). METHODS: To address the role of LPA1 in the ischemic brain damage, we used AM095, a selective LPA1 antagonist, as a pharmacological tool and lentivirus bearing a specific LPA1 shRNA as a genetic tool. Brain injury after tMCAO challenge was accessed by determining brain infarction and neurological deficit score. Role of LPA1 in tMCAO-induced microglial activation was ascertained by immunohistochemical analysis. Proinflammatory responses in the ischemic brain were determined by qRT-PCR and immunohistochemical analyses, which were validated in vitro using mouse primary microglia. Activation of MAPKs and PI3K/Akt was determined by Western blot analysis. RESULTS: AM095 administration immediately after reperfusion attenuated brain damage such as brain infarction and neurological deficit at 1 day after tMCAO, which was reaffirmed by LPA1 shRNA lentivirus. AM095 administration also attenuated brain infarction and neurological deficit at 3 days after tMCAO. LPA1 antagonism attenuated microglial activation; it reduced numbers and soma size of activated microglia, reversed their morphology into less toxic one, and reduced microglial proliferation. Additionally, LPA1 antagonism reduced mRNA expression levels of proinflammatory cytokines and suppressed NF-κB activation, demonstrating its regulatory role of proinflammatory responses in the ischemic brain. Particularly, these LPA1-driven proinflammatory responses appeared to occur in activated microglia because NF-κB activation occurred mainly in activated microglia in the ischemic brain. Regulatory role of LPA1 in proinflammatory responses of microglia was further supported by in vitro findings using lipopolysaccharide-stimulated cultured microglia, showing that suppressing LPA1 activity reduced mRNA expression levels of proinflammatory cytokines. In the ischemic brain, LPA1 influenced PI3K/Akt and MAPKs; suppressing LPA1 activity decreased MAPK activation and increased Akt phosphorylation. CONCLUSION: This study demonstrates that LPA1 is a new etiological factor for cerebral ischemia, strongly indicating that its modulation can be a potential strategy to reduce ischemic brain damage.


Brain Injuries/metabolism , Ischemic Attack, Transient/metabolism , Microglia/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Animals , Brain Injuries/pathology , Ischemic Attack, Transient/pathology , Male , Mice , Mice, Inbred ICR , Microglia/pathology
...